资源类型

期刊论文 362

会议视频 12

年份

2023 28

2022 30

2021 34

2020 27

2019 31

2018 16

2017 15

2016 18

2015 11

2014 21

2013 18

2012 12

2011 21

2010 16

2009 13

2008 14

2007 18

2006 4

2005 3

2003 2

展开 ︾

关键词

核电厂 4

地震勘探 2

地震区划 2

地震波 2

地震灾害 2

城镇建设 2

微地震监测 2

抗震设计 2

能源 2

2型糖尿病 1

3D层位 1

ACP1000 1

AP1000 1

Chebyshev多项式 1

Inconel 718合金 1

Rosenthal方程 1

TBM 隧洞 1

一维材料 1

一阶分析法 1

展开 ︾

检索范围:

排序: 展示方式:

Investigation of the seismic behavior of grouted sandy gravel foundations using shaking table tests

Tiancheng WANG; Yu LIANG; Xiaoyong ZHANG; Zhihuan RUAN; Guoxiong MEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1196-1211 doi: 10.1007/s11709-022-0865-6

摘要: Sandy gravel foundations exhibit non-linear dynamic behavior when subjected to strong ground motions, which can have amplification effects on superstructures and can reveal insufficient lateral resistance of foundations. Grouting methods can be used to improve the seismic performance of natural sandy gravel foundations. The strength and stiffness of grouted sandy gravel foundations are different from those of natural foundations, which have unknown earthquake resistance. Few studies have investigated the seismic behavior of sandy gravel foundations before and after grouting. In this study, two shaking table tests were performed to evaluate the effect of grouting reinforcement on seismic performance. The natural frequency, acceleration amplification effect, lateral displacement, and vertical settlement of the non-grouted and grouted sandy gravel foundations were measured and compared. Additionally, the dynamic stress-strain relationships of the two foundations were obtained by a linear inversion method to evaluate the seismic energy dissipation. The test results indicated that the acceleration amplification, lateral displacement amplitude, and vertical settlement of the grouted sandy gravel foundation were lower than that of the non-grouted foundation under low-intensity earthquakes. However, a contrasting result was observed under high-intensity earthquakes. This demonstrated that different grouting reinforcement strategies are required for different sandy gravel foundations. In addition, the dynamic stress-strain relationship of the two foundations exhibited two different energy dissipation mechanisms. The results provide insights relating to the development of foundations for relevant engineering sites and to the dynamic behavior of grouted foundations prior to investigating soil-structure interaction problems.

关键词: sandy gravel foundation     grouting-treated reinforcement     shaking table test     seismic behavior    

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1095-1104 doi: 10.1007/s11709-019-0538-2

摘要: The Prefabricated Cage System (PCS) has the advantages of high bearing capacity and good ductility. Meanwhile, it is convenient for factory production and it is beneficial to the cost savings, construction period shortening. Side joint is the weak region of PCS concrete frame and has great influence on seismic behavior of the whole structure. Thus systematically study on the seismic behavior of PCS concrete side joint is necessary. This paper presents a finite element study on behavior of the side joint under seismic loading. In the finite element model, PCS concrete and the reinforced concrete (RC) is modeled by the solid element and fiber-beam element, respectively. The numerical results is compared with the experimental results and it is found that the results of model based on fiber-beam element is in better agreement with the experimental results than solid element model. In addition, the overall seismic behavior of the side joints in PCS concrete is better than that of the RC with the same strength.

关键词: PCS concrete side joint     numerical simulation     fiber-beam element joint model     solid element joint model     seismic behavior    

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 255-261 doi: 10.1007/s11709-009-0043-0

摘要: To improve the seismic performance of reinforced concrete core walls, reinforced concrete composite core walls with concealed steel truss were proposed and systemically investigated. Two 1/6 scale core wall specimens, including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss, were designed. The experimental study on seismic performance under cyclic loading was carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the core walls were discussed. The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss. The calculated results were found to agree well with the actual measured ones.

关键词: reinforced concrete     steel truss     core walls     seismic performance    

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 302-308 doi: 10.1007/s11709-008-0050-6

摘要: A study is conducted on the seismic behavior of one natural concrete frame and two recycled concrete frames with 100% recycled coarse aggregate whose scales are 1:2 entirely, and a comparative study is conducted under low-reversed cyclic lateral loading and different vertical loading. This work aims to estimate the failure mechanism, hysteresis loops, displacement ductility, deterioration of strength and stiffness and energy dissipation of recycled concrete frames under low-reversed cyclic loading as well as the influence of different vertical loading. Analysis on the basis of the experiment proves that it is entirely feasible to apply recycled concrete to practical engineering for the sake of its good seismic behaviors. Theoretical base is provided for further study and practical application of recycled concrete structure.

关键词: different     aggregate     stiffness     practical application     % recycled    

Experimental study on seismic behavior of mid-rise RC shear wall with concealed truss

Wanlin CAO, Jianwei ZHANG, Jingna ZHANG, Min WANG,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 370-377 doi: 10.1007/s11709-009-0062-x

摘要: In this paper, mid-rise shear wall with concealed truss was proposed. This new composite shear wall includes two kinds of composition: one is the composition of two bearing systems, including truss and shear wall, and the other is the composition of two materials, including steel and concrete. Therefore, it is a double composite shear wall. The experimental study on the seismic behavior of six 1/3 scale mid-rise shear walls, including an ordinary mid-rise shear wall, a mid-rise shear wall with steel frame, and four mid-rise shear wall with concealed truss made of different materials, was studied. Based on the experimental study, the stiffness and its attenuation, bearing capacity, ductility, hysteretic property, energy dissipation, and failure phenomena of each shear wall were contrastively analyzed. The formulas of bearing capacity and stiffness were established. The results obtained from the formulas and those from experiment are in good agreement. Some suggestions for seismic design of shear wall are given in this paper. The experimental results show that the seismic behavior of the mid-rise shear wall with steel frame and that of every truss with different materials is obviously improved.

关键词: reinforced concrete     profile steel     concealed truss     mid-rise shear wall     seismic behavior    

Numerical study of the cyclic load behavior of AISI 316L stainless steel shear links for seismic fuse

Ruipeng LI,Yunfeng ZHANG,Le-Wei TONG

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 414-426 doi: 10.1007/s11709-014-0276-4

摘要: This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environment such as coastal regions because they are highly corrosion resistant, have good ductility and toughness properties in combination with low maintenance requirements. This paper discusses the promising use of AISI 316L stainless steel for shear links as seismic fuse devices. Hysteresis behaviors of four stainless steel shear link specimens under reversed cyclic loading were examined to assess their ultimate strength, plastic rotation and failure modes. The nonlinear finite element analysis results show that shear links made of AISI 316L stainless steel exhibit a high level of ductility. However, it is also found that because of large over-strength ratio associated with its strain hardening process, mixed shear and flexural failure modes were observed in stainless steel shear links compared with conventional steel shear links with the same length ratio. This raises the issue that proper design requirements such as length ratio, element compactness and stiffener spacing need to be determined to ensure the full development of the overall plastic rotation of the stainless steel shear links.

关键词: hysteretic damper     eccentrically braced frame     energy dissipation     seismic     stainless steel     shear link    

Seismic behavior of cantilever wall embedded in dry and saturated sand

Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 690-705 doi: 10.1007/s11709-020-0615-6

摘要: The embedded cantilever retaining walls are often required for excavation to construct the underground facilities. Significant numbers of numerical and experimental studies have been performed to understand the behavior of embedded cantilever retaining walls under static condition. However, very limited studies have been conducted on the behavior of embedded retaining walls under seismic condition. In this paper, the behavior of a small scale model embedded cantilever retaining wall in dry and saturated sand under seismic loading condition is investigated by shake table tests in the laboratory and numerically using software FLAC2D. The embedded cantilever walls are subjected to sinusoidal dynamic motions. The behaviors of the cantilever walls in terms of lateral displacement and bending moment are studied with the variation of the two important design parameters, peak amplitude of the base motions and excavation depth. The variation of the pore water pressures within the sand is also observed in the cases of saturated sand. The maximum lateral displacement of a cantilever wall due to seismic loading is below 1% of the total height of the wall in dry sand, but in case of saturated sand, it can go up to 12.75% of the total height of the wall.

关键词: embedded cantilever wall     shake table test     FLAC2D     seismic loading     saturated and dry sand    

Factors affecting the seismic behavior of segmental precast bridge columns

Haitham DAWOOD,Mohamed ELGAWADY,Joshua HEWES

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 388-398 doi: 10.1007/s11709-014-0264-8

摘要: This manuscript discusses the design parameters that potentially affect the lateral seismic response of segmental precast post-tensioned bridge piers. The piers consist of precast circular cross section segments stacked one on top of the other with concentric tendons passing through ducts made in the segments during casting. The bottommost segments of the piers were encased in steel tubes to enhance ductility and minimize damage. An FE model was used to investigate different design parameters and how they influence the lateral force – displacement response of the piers. Design parameters investigated included the initial post-tensioning stress as a percentage of the tendon yield stress, the applied axial stresses on concrete due to post-tensioning, pier aspect ratios, construction details, steel tube thicknesses, and internal mild steel rebar added as energy dissipaters. Based on the data presented, an initial tendon stress in the range of 40%-60% of its yield stress and initial axial stress on concrete of approximately 20% of the concrete’s characteristic strength is appropriate for most typical designs. These design values will prevent tendon yielding until lateral drift angle reaches approximately 4.5%. Changing the steel tube thickness, height, or a combination of both proved to be an effective parameter that may be used to reach a target performance level at a specific seismic zone.

关键词: finite element analysis     concrete     precast units     bridges    

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

《结构与土木工程前沿(英文)》   页码 855-869 doi: 10.1007/s11709-023-0972-z

摘要: Seismic analysis of historical masonry bridges is important for authorities in all countries hosting such cultural heritage assets. The masonry arch bridge investigated in this study was built during the Roman period and is on the island of Rhodes, in Greece. Fifteen seismic records were considered and categorized as far-field, pulse-like near-field, and non-pulse-like near-field. The earthquake excitations were scaled to a target spectrum, and nonlinear time-history analyses were performed in the transverse direction. The performance levels were introduced based on the pushover curve, and the post-earthquake damage state of the bridge was examined. According to the results, pulse-like near-field events are more damaging than non-pulse-like near-field ground motions. Additionally the bridge is more vulnerable to far-field excitations than near-field events. Furthermore, the structure will suffer extensive post-earthquake damage and must be retrofitted.

关键词: masonry arch bridges     seismic behavior     modal properties     pulse-like records     nonlinear time history analysis    

Seismic behavior experimental study of frame joints with special-shaped column and dispersed steel bar

Shuchun LI, Bo DIAO, Youpo SU,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 378-383 doi: 10.1007/s11709-009-0064-8

摘要: To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column, mechanical performance of three groups of six RC flame joints with special-shaped (L, T and+) column and dispersed-steel bars-beam on the top floor under cyclic loads were studied. Experimental comparison was conducted between special-shaped (L, T and+) column and normal beams. The cracking load, yielding load, ultimate bearing capacity, failure patterns, and hysteretic properties at joint core area were investigated. The seismic behaviors of the joints with different proportions of dispersed-steel-bar beams were analyzed. The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane. Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness. Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.

关键词: beam with dispersed steel bar     flame joints with special-shaped beam and column     seismic behavior     scale of dispersed steel bars    

Cyclic behavior of prefabricated reinforced concrete frame with infill slit shear walls

Kui XIAO,Qilin ZHANG,Bin JIA

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 63-71 doi: 10.1007/s11709-015-0294-x

摘要: A composite structural system consisting of prefabricated reinforced concrete frame with infill slit shear walls (PRCFW), with good ductility, is a new type of earthquake resistant structure. Pseudo-static tests were performed to evaluate the seismic behavior of the PRCFW system. Two one-bay, two-story PRCFW specimens were both built at one-half scale. Additional computational research is also conducted to enhance the nonlinear analytical capabilities for this system. Combined with the concrete damaged plastic (CDP) model provided by finite element program ABAQUS and the constitutive model of concrete proposed by Chinese code, the damage process of the PRCFW structure under cyclic load is simulated. The simulated results show a good agreement with the test data, the dynamic behavior of the PRCFW system can be simulated sufficiently accurate and efficient to provide useful design information. The experimental and numerical study show that this system has the potential to offer good ductility and energy absorption capacity to dissipate input energy, and stiffness adequate for controlling drift for buildings located in earthquake-prone regions.

关键词: slit shear wall     constitutive model     cyclic     seismic     damage    

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 272-282 doi: 10.1007/s11709-016-0346-x

摘要: In the past, several self-centering (SC) seismic systems have been developed. However, examples of self-centering systems used in practice are limited due to unusual field construction practices, high initial cost premiums and deformation incompatibility with the gravity framing. A self centering beam moment frame (SCB-MF) has been developed that mitigates several of these issues while adding to the advantages of a typical SC system. The self-centering beam (SCB) is a shop-fabricated, self-contained structural component that when implemented in a moment resisting frame can bring a building back to plumb after an earthquake. This paper describes the SCB concepts and experimental program on five SCB specimens at two-third scale relative to a prototype building. Experimental results are presented including the global force-deformation behavior. The SCBs are shown to undergo 5%–6% story drift without any observable damage to the SCB body and columns. Strength equations developed for the SCB predict the moment capacity well, with a mean difference of 6% between experimental and predicted capacities. The behavior of the restoring force mechanism is described. The limit states that cause a loss in system's restoring force which lead to a decrease in the self-centering capacity of the SCB-MF, are presented.

关键词: self-centering seismic system     seismic design     hysteretic behavior     restoring force     resilient structural system    

Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge

Yan XU, Shijie ZENG, Xinzhi DUAN, Dongbing JI

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 401-411 doi: 10.1007/s11709-018-0464-8

摘要:

According to the current seismic design codes of bridges in China, cable-stayed bridges have been usually required to remain elastic even subjected to strong earthquakes. However, the possibilities of pylon plastic behavior were revealed in recent earthquake damages. The lack of due diligence in the nonlinear seismic behavior of the pylon has caused a blurry understanding about the seismic performance of such widely built though less strong earthquake experienced structures. In light of this point, a 1/20 scaled concrete pylon model which from a typical medium span cable-stayed bridge was designed and tested on the shaking table longitudinally. The dynamic response and seismic behavior of the pylon were measured, evaluated and compared to reveal its vulnerable parts and nonlinear seismic performance. The results show that most parts of the concrete pylon remain elastic even under very strong excitations, which means a sufficient safety margin for current pylon longitudinal design. The most vulnerable parts of the pylon appeared first at the pylon bottom region, cracks opening and closing at the pylon bottom were observed during the test, and then extended to the lower column and middle column around the lower strut.

关键词: cable-stayed bridge     pylon     shaking table test     seismic behavior    

Evaluation of a developed bypass viscous damper performance

Mahrad FAHIMINIA, Aydin SHISHEGARAN

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 773-791 doi: 10.1007/s11709-020-0627-2

摘要: In this study, the dynamic behavior of a developed bypass viscous damper is evaluated. Bypass viscous damper has a flexible hose as an external orifice through which the inside fluid transfer from one side to the other side of the inner piston. Accordingly, the viscosity coefficient of the damper can be adjusted using geometrical dimensions of the hose. Moreover, the external orifice acts as a thermal compensator and alleviates viscous heating of the damper. According to experimental results, Computational Fluid Dynamic (CFD) model, a numerical formula and the simplified Maxwell model are found and assessed; therefore, the verification of numerical and computational models are evaluated for simulating. Also, a simplified procedure is proposed to design structures with bypass viscous dampers. The design procedure is applied to design an 8-story hospital structure with bypass viscous dampers, and it is compared with the same structure, which is designed with concentric braces and without dampers. Nonlinear time history analyses revealed that the hospital with viscous damper experiences less structural inelastic demands and fewer story accelerations which mean fewer demands on nonstructural elements. Moreover, seismic behaviors of nonstructural masonry claddings are also compared in the cases of hospital structure with and without dampers.

关键词: developed viscous damper     external orifice     energy dissipation     seismic behavior     CFD model of viscous damper     a simplified model    

Effect of strata restraint on seismic performance of prefabricated sidewall joints in fabricated subway

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 763-779 doi: 10.1007/s11709-023-0917-6

摘要: A disadvantage of the conventional quasi-static test method is that it does not consider the soil restraint effect. A new method to test the seismic performance of prefabricated specimens for underground assembled structures is proposed, which can realistically reflect the strata restraint effect on the underground structure. Laboratory work combined with finite element (FE) analysis is performed in this study. Three full-scale sidewall specimens with different joint forms are designed and fabricated. Indices related to the seismic performance and damage modes are analyzed comprehensively to reveal the mechanism of the strata restraint effect on the prefabricated sidewall components. Test results show that the strata restraint effect effectively improves the energy dissipation capacity, load-bearing capacity, and the recoverability of the internal deformation of the precast sidewall components. However, the strata restraint effect reduces the ductility of the precast sidewall components and aggravates the shear and bending deformations in the core region of the connection joints. Additionally, the strata restraint effect significantly affects the seismic performance and damage mode of the prefabricated sidewall components. An FE model that can be used to conduct a seismic performance study of prefabricated specimens for underground assembled structures is proposed, and its feasibility is verified via comparison with test data.

关键词: underground structures     precast sidewall specimen     seismic test method     bearing capacity     energy dissipation capacity     plastic deformation    

标题 作者 时间 类型 操作

Investigation of the seismic behavior of grouted sandy gravel foundations using shaking table tests

Tiancheng WANG; Yu LIANG; Xiaoyong ZHANG; Zhihuan RUAN; Guoxiong MEI

期刊论文

Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated

Yunlin LIU, Shitao ZHU

期刊论文

Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss

Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG ,

期刊论文

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

期刊论文

Experimental study on seismic behavior of mid-rise RC shear wall with concealed truss

Wanlin CAO, Jianwei ZHANG, Jingna ZHANG, Min WANG,

期刊论文

Numerical study of the cyclic load behavior of AISI 316L stainless steel shear links for seismic fuse

Ruipeng LI,Yunfeng ZHANG,Le-Wei TONG

期刊论文

Seismic behavior of cantilever wall embedded in dry and saturated sand

Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB

期刊论文

Factors affecting the seismic behavior of segmental precast bridge columns

Haitham DAWOOD,Mohamed ELGAWADY,Joshua HEWES

期刊论文

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

期刊论文

Seismic behavior experimental study of frame joints with special-shaped column and dispersed steel bar

Shuchun LI, Bo DIAO, Youpo SU,

期刊论文

Cyclic behavior of prefabricated reinforced concrete frame with infill slit shear walls

Kui XIAO,Qilin ZHANG,Bin JIA

期刊论文

Experimental study of the restoring force mechanism in the self-centering beam (SCB)

Abhilasha MAURYA,Matthew R. EATHERTON

期刊论文

Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge

Yan XU, Shijie ZENG, Xinzhi DUAN, Dongbing JI

期刊论文

Evaluation of a developed bypass viscous damper performance

Mahrad FAHIMINIA, Aydin SHISHEGARAN

期刊论文

Effect of strata restraint on seismic performance of prefabricated sidewall joints in fabricated subway

期刊论文